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Meteorological Measurement System Data 
 
Sub-systems: 
 
 Inertial Navigation Unit  
  (aircraft attitude, position, velocity, acceleration) 
 Air Motion Sensing System 
  (Pstatic, Ptotal, Ttotal, attack and yaw angles) 
 GPS Receiver 
  (latitude, longitude, geometric altitude) 
 Data Acquisition System  
  (continuous sampling @ 20 – 300 Hz) 
 
 
Raw variables are desampled to 20Hz for calculations 
Data products available @ 1Hz and 20Hz 
 
     Accuracy  Resolution 
 
Static Pressure:    ± 0.3 mb  0.02 mb  
 
Static Temperature:   ± 0.3K  0.01 K 
 
Wind Components 
 Horizontal (U, V) ± 1 m/s  0.05 m/s 
 Vertical (W)  ± 0.5 m/s  0.05 m/s 
 
Turbulent Dissipation Rate (€)  
 (Assumes inertial subrange exists at 3.2-6.0 Hz) 



  

Calibration of the MMS 
 
∙ Lab Cals of Pressure & Temperature 
 
 (Ps, Pt, Qlocal, Attack & Yaw angles – tolerance <0.05 mb) 
 (Tslow & Tfast Bath Calibrations – tolerance < 0.05K, long term drift < 0.1K) 
 
 
∙ Inertial Navigation Systems are response-tested 

 
(Time delays of EGI & CMIGIT attitude [pitch,roll,heading], velocity & 
acceleration determined to < 0.005 sec accuracy) 
 
 

∙ Maneuver calibrations (pitch & yaw, box turns) 
  

Pitching – calibrates AOA gain & time delay, adjust Pstatic response & delay 
 Yawing – calibrates YAW gain & time delay, adjust Pstatic response 
 Boxes – calibrates AOA & YAW offsets, overall Pstatic error (Re, Mach, AOA) 
 
 
∙ Uncertainty of air data calibrations 
  

Pstatic – 0.1 – 0.2 mb per maneuver, additional 0.1 mb due to statistical modeling 
 Tstatic – 0.1K per maneuver, additional 0.05K due to modeling 
 Air data errors are in addition to lab errors – overall 0.3 mb & 0.3K accuracy  

 
 

∙ Litton 100-G and C-MIGIT II inter-compared 
  

C-MIGIT heading angle errors of 0.5-1 deg result in U,V errors of 0.5-1 m/s. 
 C-MIGIT horizontal velocities differ from EGI xdot, ydot by < 0.5 m/s.   
 C-MIGIT Vz similar to EGI Vz, W differences < 0.2 m/s at freqs > 1 Hz. 
  
 



  

MidCiX: Problems to be Mitigated 
 
∙ MMS sensors operated normally on four flights:  

040417, 040419, 040422, 040502 
 
 

∙ Pstatic, Ptotal noise above 0.02 Hz (040503/040505)  
 
 Low Pass Filtering & Smoothing removed noise and (oops!) some signal 
 Fuselage Q, Ptotal reconstructed from AOA probe Q & statistical relation 
 

Uncertainties contribute to U,V error (1  m/s) and temperature error (0.2K).   
 Pstatic in error (< 3 mb) near beginning/end of ascent/descent (blackouts) 
 
 Level flight and most ascent/descent data are OK 
 

∙ Partial Failure of Litton INU (040430/040506) 
 
 Affected ~ 15 minutes on 040430, but most of 040506 flight 
 
 EGI Pitch & Roll, Accelerometer were OK; Heading data was corrected with an offset 
 Substituted C-MIGITS velocities, GPS RACAL position data  
 
 U,V may have 0.5 m/s errors due to C-MIGIT velocity uncertainty 
 

∙ Total Failure of Litton INU  
(040505 @ 61500 utsec) 

 
 Used C-MIGIT Velocity and Attitude (pitch, roll, heading), GPS position 
 
 U,V are uncertain by 1 – 1.5 m/s, W uncertain by 0.2 m/s 
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Phasing Between MMS Variables 
In Decaying Gravity Waves
Equations derived from linear wave theory
1.  Vertical wind shear (of horizontal wind) is small
2.  Gradual decay – waves are “tunneling” upwards
3.  Intrinsic frequency >> Coriolis frequency
4.  Anelastic assumption (no horizontal sound waves)
Vertical wavelengths as deep as H are allowed 

       (Thermodynamics)

(Horizontal momentum)

   (Continuity + Momentum)



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  

Wave Calculations 
 

1. Waves are stationary  
ω =

=
0
0cx  

 
2. Horizontal wavelength = 15km 

 
Assume wave vector parallel to wind vector @ Zg = 11km 
Wave vector orientation = 97 degrees from north 
Mean flow through waves = 22.7 m/s 
 

3. Waves gradually decay w/altitude 
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4. Vertical displacement = 230m 
 

( )∆ ∆
Γ Γ

Zg T K
K KmD

=
−

= 0 6
2 58

.
. /  

 
5. Lee wave displacement = 138m 
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Decaying gravity waves observed in the upper 
troposphere (10-12km altitude) in the vicinity of 
a subtropical jet, and to the lee of the Rockies. 
 
040419 (Subtropical Jet):   
 
· Small (< 5 µm) ice crystals and ice water 

concentrations (< 5 mg/m3) observed in some waves 
upwind or beneath the jet  

 
· Synoptic scale motions lift air 400-500m to create 

cloud layers with 25 µm ice crystals having IWC’s of 
10-40 mg/m3 

 
·   Observed gravity wave displacements were small  

(< 100m), but may augment cooling provided by 
larger scales to initiate cloud formation.   

 
· Multiple constant-altitude flight tracks needed to fully 

characterize the gravity wave field (speed, direction). 
 
040505 (Mountain waves): 
 
· Small scale ( ~ 15km wavelength) standing lee waves 

were analyzed along WB-57 flight track, 
 contributing small crystals (5 µm) & light IWC’s  

(<8 mg/m3).   
 

· Larger scale lee waves contribute cooling, but were 
not analyzed -- limited sampling over the mountains.  
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